“人工智能促进未来教育发展研究”专刊系列|人工智能教育治理:逻辑机理与实践进路
为寻求前瞻有效的治理逻辑,必须充分考量多元情境下的创新治理行动。探究运用国际观察与案例研究方法,通过对比全球12份人工智能治理的战略行动,拓展了人工智能治理的全球思路,并以新西兰人工智能协同监管实践项目为例,厘清了人工智能治理的实践流程及教育启发。
问题的提出
应对人工智能教育生态失衡的关键是科学治理,而厘清其逻辑机理则是有效治理的坚实基础。本研究重点回答如下三个问题:
- 人工智能治理的前瞻举措(包括全球行动框架和重点突破)有哪些?
- 就具体实践过程而言,人工智能教育治理依循了何种逻辑机理?
- 人工智能教育治理的未来变革方向与实践进路是什么?
人工智能教育治理的国际观察:全球行动视角
- 纵观全球行动战略,人工智能治理受到世界各国政府部门的广泛重视。各国抓住人工智能这一科技动力,纷纷制定国家层面的人工智能战略规划,科学监管人工智能技术应用的推进方向。为了保证研究样本的全面性,我们分两轮遴选了近5年人工智能治理的相关报告,最终获取了12份人工智能战略规划。人工智能治理的行动举措直接指向教育领域治理经验的极少。相比之下,人工智能技术在交通、安防、医疗、电子等行业的现实条件和应用场景更加丰富,其治理流程和应用示范也较为成熟。
- 从思想内核来看,全球12份人工智能治理战略行动呈现出“包容式”和“审慎式”两种形态。所谓“包容式治理”,即充分肯定人工智能的技术优势和情境效应,重视搭建开放包容的应用环境,强调治理的情境性和变通性等现实关照。
- 从治理过程来看,全球12份人工智能治理战略行动都彰显了技术重塑应用领域的价值准则、伦理规范以及发展方向,具有如下特点:一是共享协同化,即建构多边、民主、适用的治理体系,以应对资源的强流动性、潜在风险的强扩散性、复杂生态的不均衡性、伦理标准的区域差异性等现实挑战。二是关联系统化,即以系统方法审视人工智能技术应用的宏观、中观以及微观问题,综合考量应用成效、安全伦理、社会关系、民生福祉等现实情境。三是决策证据化,即充分考量证据导向的规则和机理,通过分布式数据采集服务,挖掘海量规模的异构数据,并采用语义分析、跟踪、脱敏和同步等治理策略,统一对过程性数据进行机器解释、分层与标签化,最大程度激活数据在各应用系统之间的活性,实现证据导向的精准施策与共享共治。四是架构精准化,即通过对全域数据的失范现象进行矫正和监控,形成精准把脉、精准施策、精准服务的数据闭环,规范人工智能治理的科学化和透明化。
人工智能教育治理的逻辑机理:国际案例的分析视角
国际案例遴选标准
综合人工智能治理共享协同化、关联系统化、决策数据化和架构精准化等特性,进一步围绕治理证据、治理过程和治理效益等遴选标准,选取新西兰人工智能协同监管项目作为案例分析对象
新西兰人工智能协同监管项目的具体示范及教育启发
新西兰人工智能协同监管项目始于2019年,遵循“审视→协同设计→测试→推广”的实践流程,打造多元支持联盟的联动结构,制定协同治理的对话框架,落实区域治理的行动举措和监督规制,同时辅以治理工具和促成条件等支持,保障了人工智能治理的系统性和整体性。
人工智能教育治理的逻辑机理
人工智能技术正以前所未有的速度和规模重塑着教育生态系统,若要进一步发挥人工智能的“头雁效应”,降低技术应用的潜在风险,则需基于内生机制的经验规律,赋能人工智能教育治理的典型应用场景和关键行动举措。通过汲取新西兰人工智能协同监管项目的成功经验,有助于拓深治理进程的关键要点,为人工智能教育治理的前瞻性、针对性和可操作性,提供科学高效的示范指引。
人工智能教育治理的未来实践进路
人工智能技术具有重塑教育生态的巨大潜力,其与教育系统融合的复杂过程,应遵循灵活适应的治理路径,打破技术应用进程中的隔膜与障碍,保持人工智能教育系统的动态平衡。本研究采用国际观察与案例分析的方法,通过对比全球12份人工智能治理的行动举措,并以新西兰人工智能协同监管实践项目为例,详细阐释了全国对话、监管设计、风险与效益评估等人工智能治理的具体示范及对教育治理启发,为人工智能教育创新治理的逻辑机理提供了直接经验。基于机理探索,认为未来人工智能教育治理的关键,在于打造开放包容的治理场景,推动人工智能教育治理的系统性;形塑多元协同的治理机制,提升人工智能教育治理的有效性;应用动态预测的治理方法,保障人工智能教育治理的前瞻性。
参考文献
李世瑾,王成龙,顾小清.人工智能教育治理:逻辑机理与实践进路[J].华东师范大学学报(教育科学版),2022,40(09):55-66.2022.09.006.